RESULTS OF IN-VIVO TESTING OF A NOVEL MACRO-SCALE OSSEOINTEGRATION SURFACE MORPHOLOGY

4th INTERNATIONAL PEEK SYMPOSIUM WASHINGTON D.C., APRIL 2019

AUTHORS

CAUSEY, GC¹ Ph.D., PICHA, GJ¹ M.D., Ph.D., F.A.C.S., PRICE, J¹ WALSH, WR² Ph.D., PELLETIER, M² Ph.D., WANG, T² Ph.D.

 ¹ Applied Medical Research, Brecksville Ohio, USA
² Surgical & Orthopaedic Research Laboratories, Prince of Wales Clinical School, University of New South Wales, Sydney, Australia

DISCLOSURES RELEVANT TO TOPIC

PICHA GJ: PRESIDENT AND CEO: APPLIED MEDICAL RESEARCH PRICE J: EMPLOYEE: APPLIED MEDICAL TECHNOLOGY CAUSEY G: CONSULTANT: APPLIED MEDICAL TECHNOLOGY WALSH WR, PELLETIER M, WANG T: NONE

PLATFORM TECHNOLOGY FOR ORTHOPEDIC SURFACES

OPEN ARRAY OF MACRO-SCALE PILLARS ENABLING CONTINUOUS BONY IN-GROWTH

COMPLIMENTARY TO MICRO/NANO TECHNOLOGY

Auxano

Continuous Bone Fixation Interface

FULLY ENGINEERED INTERFACE TAILORED TO UNDERLYING BONY ANATOMY AND BIOMECHANICAL REQUIREMENTS

PILLAR GEOMETRY HEIGHT PROFILE SHAPE

FULLY ENGINEERED INTERFACE TAILORED TO UNDERLYING BONY ANATOMY AND BIOMECHANICAL REQUIREMENTS

PILLAR GEOMETRY HEIGHT PROFILE SHAPE SURFACE MORPHOLOGY SPACING DENSITY

FULLY ENGINEERED INTERFACE TAILORED TO UNDERLYING BONY ANATOMY AND BIOMECHANICAL REQUIREMENTS

PILLAR GEOMETRY HEIGHT PROFILE SHAPE SURFACE MORPHOLOGY SPACING DENSITY IMPLANT MATERIAL METALS POLYMERS ALLOGRAFT BONE

FULLY ENGINEERED INTERFACE TAILORED TO UNDERLYING BONY ANATOMY AND BIOMECHANICAL REQUIREMENTS

PILLAR GEOMETRY HEIGHT PROFILE SHAPE SURFACE MORPHOLOGY **SPACING** DENSITY **IMPLANT MATERIAL** METALS POLYMERS **ALLOGRAFT BONE** SURFACE FINISH COATED **GRIT BLAST** ACID ETCH POROUS

FULLY ENGINEERED INTERFACE TAILORED TO UNDERLYING BONY ANATOMY AND BIOMECHANICAL REQUIREMENTS

PILLAR GEOMETRY HEIGHT PROFILE SHAPE SURFACE MORPHOLOGY **SPACING** DENSITY **IMPLANT MATERIAL METALS** POLYMERS ALLOGRAFT BONE SURFACE FINISH COATED **GRIT BLAST** ACID ETCH POROUS

<image>

MANUFACTURING ADDATIVE SUBTRACTIVE MOLDING

BIOLOGIC: CONTINUOUS BONY PHASE

CONTINUOUS BONE & DISCONTINUOUS IMPLANT

CONTINUOUS PHASE ENABLES

ROBUST INTERDIGITATED BONE IN-GROWTH

LARGE VOID VOLUME

HIGHLY AND FULLY INTERCONNECTED GROWTH SPACE

EASILY ACCESSIBLE GROWTH SPACE

DISCONTINUOUS IMPLANT

DISCONTINUOUS BONE

CONTINUOUS IMPLANT

BIOLOGIC: CONTINUOUS BONY PHASE

DISCONTINUOUS

IMPLANT MORPHOLOGY

OVINE TIBIA μCT RECONSTRUCTION

CONTINUOUS BONY PHASE

BIOMECHANICAL: STRESS TRANSFER

STRUCTURAL MORPHOLOGY TO EFFECTIVELY TRANSFER STRESS

GRADUAL STRESS TRANSFER THROUGH TRANSITION ZONE

DISTRIBUTION OF MATERIAL

IN-VIVO PHASE I: PROOF OF CONCEPT, PILLAR SPACING 2009 CANINE STUDY, PEEK IMPLANTS

DETAILS: 6 CANINES, 6WK IMPLANTS: 12x8x4mm PLATES, PEEK END POINTS: HISTOLOGY, PUSHOUT MAIN FINDINGS: OVER 50% VOID VOLUME: SOLID BONY IN-GROWTH INCREASED PUSHOUT RESISTANCE

PILLAR GEOMETRY	N/A	400x400μm x 500μm TALL				
PILLAR SPACING	N/A	100µm	200µm	400µm	400µm	
MATERIAL	PEEK				TITANIUM	
VOID VOLUME %	0%	36%	56%	75%	75%	

IN-VIVO PHASE II: GEOMETRY ASSESSMENT 2015 OVINE STUDY – W.R. WALSH PH.D. – UNSW

<u>DETAILS</u>: 8 SHEEP, 4 EACH AT 4&12 WK <u>IMPLANTS</u>: 6mm DOWELS, LINE TO LINE FIT <u>END POINTS</u>: HISTOLOGY, PUSHOUT <u>MAIN FINDINGS</u>: FULLY IN-GROWN BONE

INCREASED PUSHOUT RESISTANCE

PILLAR HEIGHT	N/A	500µm	1000µm	500µm
PILLAR SPACING	N/A	400µm	400µm	600µm
VOID VOLUME %	0%	77%	80%	85%

IN-VIVO PHASE II: GEOMETRY ASSESSMENT 2015 OVINE STUDY – W.R. WALSH PH.D. – UNSW

12 WEEK HISTOLOGY

TITANIUM GRIT BLAST TITANIUM 400µm SPACING TITANIUM 600µm SPACING

IN-VIVO PHASE II: GEOMETRY ASSESSMENT 2015 OVINE STUDY – W.R. WALSH PH.D. – UNSW

12 WEEK HISTOLOGY

TITANIUM TALL 400µm SPACING

TITANIUM TALL 400μm SINGLE PILLAR VIEW

DETAILS: 12 SHEEP, 6 EACH AT 6&12 WK IMPLANTS: 6mm DOWELS, LINE TO LINE FIT END POINTS: HISTOLOGY, µCT, PUSHOUT MAIN FINDINGS:

ROBUST BONY IN-GROWTH INTO ALL MATERIALS IN-GROWTH AGNOSTIC TO IMPLANT MATERIALS

MATERIAL	SQUARE PILLAR WIDTH	PILLAR HEIGHT	PILLAR SPACING	VOID VOLUME %	
TALL PEEK*	400µm	1000µm	400µm	80%	mmmm
PEEK*		750µm	665µm	77%	
ΡΕΕΚ ΗΑ ^ξ					
K* TI COATED $^{\phi}$	750µm				
TITANIUM					
UHMWPE					

*Evonik ^ξInvibio ^φOrchid Orthopedics

MAT

TALL

PEEK* TI

12 WEEK HISTOLOGY PILLARED IMPLANT

TALL PEEK, 400µm

PEEK

12 WEEK HISTOLOGY PILLARED IMPLANT

TI COATED PEEK

TITANIUM

UHMWPE

12 WEEK HISTOLOGY: OFF-AXIS SLICE PLANE THROUGH PILLARES

TI COATED PEEK

TALL PEEK, 400μm SPACING

12 WEEK μCT PILLARED IMPLANT

Sheep_Boneingrowth_1bed_40LX26/V_Medi...R 2018-Apr-18, AMP2017-1_V/2949L3_XCT_Sheep_Boneingrowth_1bed_40 11 54 49, AMP2017-1_V/2949L3_XCT_Sheep_Boneingrowth_1bed_40

12 WEEK μCT PILLARED IMPLANT

TI COATED PEEK

017-1_A/22960L2.ct

UHMWPE

IN-VIVO PHASE III: MATERIAL COMPOSITION 2018 OVINE STUDY – W.R. WALSH PH.D. - UNSW 12 WEEK μCT: "UNWRAPPED" SLICE PLANE, TALL PEEK, 400μm SPACING

PUSHOUT TESTING: INTERFACE STRENGTH / STIFFNESS

NO DIFFERENCE IN PUSHOUT BETWEEN PEEK AND TITANIUM PILLARS

SMALL SAMPLE SIZE AND LARGE STANDARD DEVIATION

PUSHOUT TESTING: INTERFACE STRENGTH / STIFFNESS

TITANIUM PILLAR INTERFACE IS STIFFER THAN PEEK PILLAR INTERFACE

SMALL SAMPLE SIZE AND LARGE STANDARD DEVIATION

PUSHOUT TESTING: INTERFACE STRENGTH VS STIFFNESS

METAL ON-GROWTH SURFACE VS POLYMERS WITH PILLARED SURFACE GEOMETRY

PEEK HA μCT DEMONSTRATED SOLID BONY IN-GROWTH AT 12 WEEKS

2500N OF FORCE AT 2mm DISPLACEMENT

EXAMINE HISTOLOGY TO REVIEW FAILURE MODE AND DISPLACEMENT

HISTOLOGY SHOWED LITTLE TO NO DISPLACEMENT AT THE BONE / IMPLANT INTERFACE

PRE AND POST TEST IMAGES

ULTIMATE STRENGTH OF INTERFACE WAS GREATER THAN THE STRENGTH OF THE BASE MATERIAL

CONCLUSION/FUTURE WORK

CONCLUSIONS

IN TITANIUM AND PEEK PILLARS EQUIVALENT BONY IN-GROWTH EQUIVALENT PUSHOUT STRENGTH

PEEK PILLAR INTERFACE EXCEEDS STRENGTH OF PEEK MATERIAL

DESIGNING THE INTERFACE STIFFNESS

PILLAR MORPHOLOGY HAS LARGE VOID VOLUME: 75-85%

PRIMARY FIXATION EVIDENCED BY BONE GROWTH

NO INFLAMATION, LITTLE SOFT TISSUE

FUTURE WORK

IDENTIFY CLINICAL APPLICATION: MOVE TO COMMERCIALIZATION

IN-VIVO LOAD BEARING IMPLANT STUDIES

BIOMECHANICAL STUDIES: INITIAL FIXATION AND DYNAMIC RESPONSE

EXPLORE STRENGTH VS STIFFNESS NEEDS OF DIFFERENT CLINICAL APPLICATIONS